Package: caROC 0.1.5
caROC: Continuous Biomarker Evaluation with Adjustment of Covariates
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
Authors:
caROC_0.1.5.tar.gz
caROC_0.1.5.zip(r-4.5)caROC_0.1.5.zip(r-4.4)caROC_0.1.5.zip(r-4.3)
caROC_0.1.5.tgz(r-4.4-any)caROC_0.1.5.tgz(r-4.3-any)
caROC_0.1.5.tar.gz(r-4.5-noble)caROC_0.1.5.tar.gz(r-4.4-noble)
caROC_0.1.5.tgz(r-4.4-emscripten)caROC_0.1.5.tgz(r-4.3-emscripten)
caROC.pdf |caROC.html✨
caROC/json (API)
# Install 'caROC' in R: |
install.packages('caROC', repos = c('https://ziyili20.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:6c243aa38c. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win | OK | Nov 06 2024 |
R-4.5-linux | OK | Nov 06 2024 |
R-4.4-win | OK | Nov 06 2024 |
R-4.4-mac | OK | Nov 06 2024 |
R-4.3-win | OK | Nov 06 2024 |
R-4.3-mac | OK | Nov 06 2024 |
Exports:caROCcaROC_CBcaThresholdplot_caROCplot_caROC_CBplot_sscaROCplot_sscaROC_CBsscaROCsscaROC_CB
Dependencies:latticeMASSMatrixMatrixModelsquantregRColorBrewerSparseMsurvival